

Polar Stratospheric Clouds

By IASToppers | 2023-12-22 15:35:00

Polar Stratospheric Clouds

The appearance of **Polar Stratospheric Clouds** recently made **early onset in December** instead of January, suggesting an **atypical Arctic winter**.

[Ref- India Today]

What are Polar stratospheric clouds (PSCs)?

- Polar stratospheric clouds (PSCs) are clouds that form in the winter polar stratosphere at altitudes of 15,000–25,000 meters.
 - Stratosphere is the second layer of Earth's atmosphere, located between the troposphere and mesosphere, lying from 12 to 50 km above the Earth's surface.
- They are known as nacreous clouds because their iridescence resembles mother of pearl.
- Earth's stratosphere is typically absent of moisture, but Arctic winter's extreme conditions at

- around -85°C allow sparse water vapor to condense into ice particles.
- PSCs scatter **high-altitude sunlight**, creating iridescent colors visible even when the **sun is below the horizon**.
- **Observation**: Best sighting is during civil twilight when the sun is between 1-6° below horizon, mostly in northern latitudes.
- This phenomenon is **most common** in Antarctica, but spotted in the Arctic, Scotland, Scandinavia, Alaska, Canada and the northern Russian Federation.
- This occurs in downwind of mountain ranges which can induce gravity waves in the lower stratosphere.

Impact on Ozone Layer:

- Substances like **chlorofluorocarbons (CFCs)**, commonly found in aerosols and refrigeration, gradually rise to stratosphere and contribute to **ozone layer depletion**.
- Ultraviolet light breaks down CFCs in the stratosphere, releasing free chlorine atoms.
- PSCs are linked to **ozone depletion** as they facilitate chemical reactions, converting benign chlorine into reactive, **ozone-destroying forms.**
- They also **remove nitrogen compounds** that moderate the destructive impact of chlorine on the ozone layer.
- Nacreous clouds have **frozen water crystals**, **nitric acid**, **and sulphuric acid**, providing an ideal surface for chemical reactions that release chlorine atoms **back into the atmosphere**.

[Ref- Research Gate]