

How mitochondria adapted to living within cells

By IASToppers | 2022-03-28 17:25:00

How mitochondria adapted to living within cells

An organism that has been around from 2 billion years ago has given biologists from Centre for Cellular and Molecular Biology, Hyderabad (CCMB), a clue as to how mitochondria became an inseparable part of animal and plant cells.

[Ref-The Hindu]

Highlights of research

- Researchers observed the unexpected biochemistry of eukaryotic D-aminoacyl-tRNA deacylase (DTD) that could be explained based on endosymbiotic origin of complex eukaryotic cell organelles.
 - Endosymbiosis is an intense form of symbiosis when one of the organisms is captured and internalized by the other.
- They found that a prokaryotic organism (without a nucleus) called **archaea** captured a bacterial cell some million year ago.
 - Archaea is any of a group of single-celled prokaryotic organisms that have distinct molecular characteristics separating them from bacteria as well as from eukaryotes.
- They also studied an ancient organism known as 'Jakobid'.
 - It has been present since before animals and fungi branched off from plants and algae in the process of evolution.
- The researchers show that changes, in a **protein (DTD) and a tRNA** (carrying an amino acid glycine for protein synthesis) are crucial for the successful emergence of mitochondria.
- The other change identified by the researchers is that mitochondrial tRNA (Gly) has changed its critical nucleotide base from U73 to A73.

Mitochondria

It was first discovered by Albert von Kolliker in 1857.

- It is a double-membrane-bound organelle found in most eukaryotic organisms.
- It generates most of the chemical energy needed to power the cell's biochemical reactions.
- Chemical energy produced by the mitochondria is **stored in a small molecule called adenosine triphosphate (ATP).**
 - It is popularly known as the "powerhouse of the cell".
- Mitochondria contain their own small chromosomes.
- It is commonly between 0.75 and 3 ?m2 in the area but varies **considerably in size and structure**.
- Generally, mitochondria, and therefore mitochondrial DNA, are inherited only from the mother.
- Mitochondria have been implicated in several human disorders and conditions, such as mitochondrial diseases, cardiac dysfunction, heart failure, and autism.
- The number of mitochondria in a cell can vary widely by organism, tissue, and cell type.
 - A mature red blood cell has no mitochondria, whereas a liver cell can have more than 2000.
- There are five distinct parts to a mitochondrion:
 - The **outer** mitochondrial membrane.
 - The **intermembrane space** (the space between the outer and inner membranes).
 - The inner mitochondrial membrane.
 - The **cristae space** (formed by infoldings of the inner membrane).
 - The matrix (space within the inner membrane), is a fluid.

Eukaryotic cell

- It contains **membrane-bound organelles** such as a nucleus, mitochondria, and an endoplasmic reticulum.
- Organisms based on the eukaryotic cell include protozoa, fungi, plants, and animals.
- It **contains mitochondria** to create ATP molecules from glucose and chloroplasts to create glucose from sunlight.

Eukaryotic Cell

[Ref-ScienceFacts.net]